Enumerative Problems Inspired by Mayer's Theory of Cluster Integrals
نویسنده
چکیده
The basic functional equations for connected and 2-connnected graphs can be traced back to the statistical physicists Mayer and Husimi. They play an essential role in establishing rigorously the virial expansion for imperfect gases. We first review these functional equations, putting the emphasis on the structural relationships between the various classes of graphs. We then investigate the problem of enumerating some classes of connected graphs all of whose 2-connected components (blocks) are contained in a given class B. Included are the species of Husimi graphs (B = “complete graphs”), cacti (B = “unoriented cycles”), and oriented cacti (B = “oriented cycles”). For each of these, we address the question of their labelled and unlabelled enumeration, according (or not) to their block-size distributions. Finally we discuss the molecular expansion of these species. It consists of a descriptive classification of the unlabelled structures in terms of elementary species, from which all their symmetries can be deduced.
منابع مشابه
Some Applications of Localization to Enumerative Problems
1 Dedicated to Bill Fulton on the occasion of his 60th birthday 1. Introduction. A problem in enumerative geometry frequently boils down to the computation of an integral on a moduli space. We have intersection theory (with Fulton's wonderful Intersection Theory [7] as a prime reference) to thank for allowing us to make rigorous sense of such integrals, but for their computations we often need ...
متن کاملMatrix Integrals and Map Enumeration: An Accessible Introduction
Physicists working in two-dimensional quantum gravity invented a new method of map enumeration based on computation of Gaussian integrals over the space of Hermitian matrices. This paper explains the basic facts of the method and provides an accessible introduction to the subject. Keywords-Maps, Imbedded graphs, Enumerative combinatorics, Matrix integrals, Quantum field theory, String theory.
متن کاملTopological String Theory and Enumerative Geometry
In this thesis we investigate several problems which have their roots in both topological string theory and enumerative geometry. In the former case, underlying theories are topological field theories, whereas the latter case is concerned with intersection theories on moduli spaces. A permeating theme in this thesis is to examine the close interplay between these two complementary fields of stu...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 11 شماره
صفحات -
تاریخ انتشار 2004